Biochemical identification and biophysical characterization of a channel-forming protein from Rhodococcus erythropolis.
نویسندگان
چکیده
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.
منابع مشابه
Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1
Biodegradation of phenol is a major focus of toxic organic compound degradation by microorganisms isolated from polluted areas. An increasing number of bacteria and fungi possessing unique biodegradation capabilities have been isolated in recent years. In this study a new isolate, Rhodococcus erythropolis SKO-1, from polluted soils in the Tehran oil refinery region, is reported. Identificati...
متن کاملComposite nanolayer photocatalyst-biocatalyst Rhodococcus erythropolis R1 for desulfurization of dibenzothiophene
A nanolayer of composite and Rhodococcus erythropolis biocatalyst was studied for the first time for desulfurization of dibenzothiophene as a model sulfur compound and its performance was compared with that of composite and R. erythropolis alone. The nanolayer of composite was synthesized by sol-gel method from ferrous oxalate and zinc oxalate precursors coated on glass by spin coating techniqu...
متن کاملIsolation and Identification of a Sulfide/Sulfoxide Monooxygenase Gene from a Newly Isolated Rhodococcus Sp. Strain FMF
Rhodococcus FMF is a gram-positive bacterium isolated for the first time from soil samples of Tabriz refinery in Iran. This microorganism is able to catabolize dibenzothiophene to 2-hydroxybiphenyl and inorganic sulfur without the destruction of carbon-carbon bonds. Three structural genes, dszA, dszB, and dszC have been characterized and shown to be responsible for this phenotype. In this work,...
متن کاملCharacterization of catechol catabolic genes from Rhodococcus erythropolis 1CP.
The biochemical characterization of the muconate and the chloromuconate cycloisomerases of the chlorophenol-utilizing Rhodococcus erythropolis strain 1CP previously indicated that efficient chloromuconate conversion among the gram-positive bacteria might have evolved independently of that among gram-negative bacteria. Based on sequences of the N terminus and of tryptic peptides of the muconate ...
متن کاملImprovement of Desulfurization Performance of Rhodococcus erythropolis IGTS8 by Assembling Spherical Mesoporous Silica Nanosorbents on the Surface of the Bacterial Cells
MCM-41 mesoporous silica is synthesized based on a self assembly method, using a quaternary ammonium template, CTAB for the adsorption of sulfur compounds from model oil (1.0 mmol/l DBT in dodecane solution). Then the adsorption capability of MCM-41 assembled on the surface of bacterium Rhodococcus erythropolis IGTS8 is examined regarding the improvement of the biodesulfurization process of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 182 3 شماره
صفحات -
تاریخ انتشار 2000